Automatic clustering of multispectral imagery by maximization of the graph modularity

نویسندگان

  • Ryan A. Mercovich
  • Anthony Harkin
  • David Messinger
چکیده

Automatic clustering of spectral image data is a common problem with a diverse set of desired and potential solutions. While typical clustering techniques use first order statistics and Gaussian models, the method described in this paper utilizes the spectral data structure to generate a graph representation of the image and then clusters the data by applying the method of optimal modularity for finding communities within the graph. After defining and identifying pixel adjacencies to represent an image as an adjacency matrix, a recursive splitting is performed to group spectrally similar pixels using the method of modularity maximization. The careful selection of pixel adjacencies determines the success of this spectral clustering technique. The modularity maximization process uses the eigenvector of the modularity matrix with the largest positive eigenvalue to split groups of pixels with non-linear decision surfaces and uses the modularity measure to help estimate the optimal number of clusters to best characterize the data. Using information from each recursion, the end result is a variable level of detail cluster map that is more visually useful than previous methods. Additionally, this method outperforms many typical automatic clustering methods such k-means, especially in highly cluttered urban scenes. The optimal modularity technique hierarchically clusters spectral image data and produces results that more reliably characterize the number of clusters in the data than common automatic spectral image clustering techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bad Communities with High Modularity

In this paper we discuss some problematic aspects of Newman’s modularity function QN . Given a graph G, the modularity of G can be written as QN = Qf −Q0, where Qf is the intracluster edge fraction of G and Q0 is the expected intracluster edge fraction of the null model, i.e., a randomly connected graph with same expected degree distribution as G. It follows that the maximization of QN must acc...

متن کامل

Modularity-Driven Clustering of Dynamic Graphs

Abstract. Maximizing the quality index modularity has become one of the primary methods for identifying the clustering structure within a graph. As contemporary networks are not static but evolve over time, traditional static approaches can be inappropriate for specific tasks. In this work we pioneer the NP-hard problem of online dynamic modularity maximization. We develop scalable dynamization...

متن کامل

Automatic Tissue Classification for the Human Head from Multispectral MRI

A robust, automatic algorithm is presented for classifying multispectral MR scans of the human head into nine tissue classes. User initialization is not required. The proposed algorithm is based on three principles: (i) a combination of scalar and multispectral Expectation-Maximization clustering stages are used for fast, unsupervised statistical analysis, (ii) the minimal required amount of pr...

متن کامل

Unsupervised Classification of Changes in Multispectral Satellite Imagery

The statistical techniques of multivariate alteration detection, maximum autocorrelation factor transformation, expectation maximization, fuzzy maximum likelihood estimation and probabilistic label relaxation are combined in a unified scheme to classify changes in multispectral satellite data. An example involving bitemporal LANDSAT TM imagery is given.

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011